Rotated domain network in graphene on cubic-SiC(001).
نویسندگان
چکیده
The atomic structure of the cubic-SiC(001) surface during ultra-high vacuum graphene synthesis has been studied using scanning tunneling microscopy (STM) and low-energy electron diffraction. Atomically resolved STM studies prove the synthesis of a uniform, millimeter-scale graphene overlayer consisting of nanodomains rotated by ±13.5° relative to the left angle bracket 110 right angle bracket-directed boundaries. The preferential directions of the domain boundaries coincide with the directions of carbon atomic chains on the SiC(001)-c(2 × 2) reconstruction, fabricated prior to graphene synthesis. The presented data show the correlation between the atomic structures of the SiC(001)-c(2 × 2) surface and the graphene/SiC(001) rotated domain network and pave the way for optimizing large-area graphene synthesis on low-cost cubic-SiC(001)/Si(001) wafers.
منابع مشابه
Continuous Wafer-Scale Graphene on cubic-SiC(001)
The atomic and electronic structure of graphene synthesized on commercially available cubic‐SiC(001)/Si(001) wafers have been studied by low energy electron microscopy (LEEM), scanning tunneling microscopy (STM), low energy electron diffraction (LEED), and angle resolved photoelectron spectroscopy (ARPES). LEEM and STM data prove the wafer‐scale continuity and uniform thickness of t...
متن کاملGraphene as a Buffer Layer for Silicon Carbide-on-Insulator Structures
We report an innovative technique for growing the silicon carbide-on-insulator (SiCOI) structure by utilizing polycrystalline single layer graphene (SLG) as a buffer layer. The epitaxial growth was carried out using a hot-mesh chemical vapor deposition (HM-CVD) technique. Cubic SiC (3C-SiC) thin film in (111) domain was realized at relatively low substrate temperature of 750 °C. 3C-SiC energy b...
متن کاملSublimation growth of thick freestanding 3C-SiC using CVD-templates on silicon as seeds
Cubic silicon carbide is a promising material for medium power electronics operating at high frequencies and for the subsequent growth of gallium nitride for more efficient light emitting diodes. We present a new approach to produce freestanding cubic silicon carbide (3C-SiC) with the ability to obtain good crystalline quality regarding increased domain size and reduced defect density. This wou...
متن کاملCUBIC GaN HETEROEPITAXY ON THIN-SiC-COVERED Si(001)
We have investigated the growth conditions of cubic GaN (β-GaN) layers on very thin SiC-covered Si(001) by using gas-source molecular beam epitaxy as functions of SiC layer thickness, Ga-cell temperature and substrate temperature. Under the present SiC formation conditions on Si substrates by carbonization using C2H2 gas, the SiC layers with the thickness between 2.5 and 4 nm result in the epit...
متن کاملElastic properties of edges in BN and SiC nanoribbons and of boundaries in C-BN superlattices: A density functional theory study
Using density functional theory calculations, we compute the edge energies and stresses for edges of SiC and BN nanoribbons, and the boundary energies and stresses for domain boundaries of graphene-BN superlattices. SiC and BN armchair nanoribbons show pronounced edge relaxations, which obliterate the threefold oscillatory behavior of the edge stress reported for graphene. Our calculations show...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Nanotechnology
دوره 25 13 شماره
صفحات -
تاریخ انتشار 2014